General Instructions

\int Electric
DuraDrive Electric Damper Actuators
MF41-6043/MF41-6083 Series
Non-spring Return Rotary
24VAC 3-Position Control

Description
These DuraDrive ${ }^{\text {TM }}$ direct coupled 24 Vac non-spring return rotary electric actuators are designed for three-position (floating) control of dampers.

Features	- Compact, lightweight design
	- Manual override
	- 5° preload as shipped from factory
	- Plenum cabling
	- cUL and UL listed; plenum versions also CE certified
Application	These actuators are used in constant or variable air volume installations for control of HVAC dampers requiring up to $35 \mathrm{lb}-\mathrm{in}(4 \mathrm{Nm})$ or $70 \mathrm{lb}-\mathrm{in}(8 \mathrm{Nm})$.

Product Numbers

Table 1.

Torque	Cabling	Standard	With Potentiometer	Dual Auxiliary Switches Only
35 Ib-in $(4 \mathrm{Nm})$	Plenum	MF41-6043	MF41-6043-510	MF41-6043-502
$70 \mathrm{lb}-\mathrm{in}(8 \mathrm{Nm})$		MF41-6083	MF41-6083-510	MF41-6083-502

Warning/Caution Notations

WARNING:	A	Personal injury or loss of life may occur if you do not follow a procedure as specified.
CAUTION:	A	Equipment damage or loss of data may occur if you do not follow a procedure as specified.

Specifications	Operating voltage (G-Y1 or G-Y2)	$24 \mathrm{Vac}+20 \%,-15 \%$
	Frequency	$50 / 60 \mathrm{~Hz}$
Power supply	Power consumption	2.3 VA
Equipment rating	Rating	Class 2 according to UL/cUL Class III per EN60730
Auxiliary features	Feedback potentiometer (MF41-6043-510 and MF41-6083-510)	$\begin{aligned} & 0 \text { to } 1000 \Omega \\ & <10 \mathrm{~mA} \end{aligned}$
	Dual auxiliary switch contact rating	
	AC rating	24 Vac 4A resistive, 2A inductive
	DC rating	$\begin{aligned} & 12 \text { to } 30 \mathrm{Vdc} \\ & \mathrm{DC} 2 \mathrm{~A} \end{aligned}$
	Switch Range	
	Switch A	0° to 90° with 5° intervals
		0° to 45°
	Factory setting	5°
	Switch B Recommended range usage Factory setting	0° to 90° with 5° intervals 45° to 90° 85°
	Switching hysteresis	2°
Function	Torque	
	MF41-6043 Series	$35 \mathrm{lb}-\mathrm{in}(4 \mathrm{Nm})$
	MF41-6083 Series	70 lb -in (8 Nm)
	Runtime for 90° opening or closing	
	MF41-6043 Series	90 sec . at $60 \mathrm{~Hz}(108 \mathrm{sec}$. at 50 Hz$)$
	MF41-6083 Series	125 sec . at $60 \mathrm{~Hz}(150 \mathrm{sec}$. at 50 Hz$)$
	Nominal angle of rotation	90°
	Maximum angular rotation	95°
Mounting	Shaft size: Minimum shaft length 3/4-inch (20 mm)	
	\bigcirc	Δ
		inch $9 / 16$ inch mm 15 mm

Figure 1. Acceptable Shaft Sizes.

Housing	Enclosure	NEMA Type 2 IP54 according to EN60529
	Material	Durable plastic
	Gear lubrication	Silicone-free
Ambient conditions	Ambient temperature	
	Operation	$-25^{\circ} \mathrm{F}$ to $130^{\circ} \mathrm{F}\left(-32^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
	Storage and transport	$-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
	Voltage Requirements for 6083 Series	
	at High Temperatures	Minimum voltage: $24 \mathrm{Vac}+20 \%,-10 \%$ $90^{\circ} \mathrm{F}$ to $130^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
	Ambient humidity (non-condensing)	95\% rh
Agency certification		UL 873
		cUL certified to Canadian Standard C22.2 No. 24-93
C $\epsilon_{\text {conformity }}$		89/336/EEC
	Emissions standards	EN 61000-6-3:2001
	Immunity standards	EN 61000-6-2:2001
	Requirements for electric actuators	EN 60730-2-14:2001

Dual Auxiliary Switch

MF41-6043-502
MF41-6083-502

Figure 3 shows the adjustable switching values for the auxiliary switches A and B .
Actuator Scale: clockwise

Adjustment range for Switches A and B Setting interval: 5° Switching hysteresis: 2°

Actuator Scale: counterclockwise

Figure 3. Adjustable Switching Values for the dual auxiliary Switches.

NOTES:

- The auxiliary switch setting shafts rotate with the actuator. The scale is valid only when the actuator is in the " 0 " position on clockwise motion.
- For the counterclockwise rotation, the adjustment lever has to move from 90° to 0° by using the manual override and then adjust the auxiliary switches. After the auxiliary switches are adjusted, the adjustment lever has to move back to the 90° position.
- Use the long arm of the X to point to the position of switch A. Use the narrower tab on the red ring to point to the position of switch B.

Sizing

The type of actuator required depends on several factors.

1. Obtain damper torque ratings $\left(\mathrm{ft}-\mathrm{lb} / \mathrm{ft}^{2}\right.$ or $\left.\mathrm{Nm} / \mathrm{m}^{2}\right)$ from the damper manufacturer.
2. Determine the area of the damper.
3. Calculate the total torque required to move the damper:

$$
\text { Total Torque }=\frac{\text { Torque Rating } \times \text { Damper Area }}{\mathrm{SF}^{1}}
$$

${ }^{1}$ Safety Factor: When determining the torque of an actuator required, a safety factor should be included for unaccountable variables such as slight misalignments, aging of the damper, etc. A suggested safety factor is 0.80 (or 80% of the rated torque).
4. Select the actuator type from Table 2.

Table 2.

Total Torque	Actuator
$<35 \mathrm{lb}-\mathrm{in}(4 \mathrm{Nm})$	MF41-6043 Series
$<70 \mathrm{lb}-\mathrm{in}(8 \mathrm{Nm})$	MF41-6083 Series

Mounting and Installation

Manual override

You must place the actuator on the damper shaft so that the front of the actuator is accessible. The label is the front side.

The minimum damper drive shaft length is $3 / 4$-inch (20 mm).

1/2-inch Diameter Guide

3/8-inch Diameter Use the shaft insert supplied
for any $3 / 8$-inch (8 to 10 mm)
diameter shaft

5/8-inch Diameter

NOTE: For all damper shafts except the $1 / 2$-inch round shaft, remove the $1 / 2$-inch diameter guide before installation.

Figure 4. Damper Shaft Sizes.

- An anti-rotation bracket is included with the actuator.
- Observe the service envelope around the actuator as shown in Figure 8.
- For detailed mounting instructions, see Installation Instructions F-27211.

To move the damper blades and lock the position with no power present:

1. Slide the red manual override knob toward the back of the actuator.
2. Make adjustments to the damper position.
3. Slide the red manual override knob toward the front of the actuator.

Once power is restored, the actuator returns to automated control.

Figure 5. Manual Override.

Mechanical range adjustment

1. Loosen the stop set screw.
2. Move the screw along the track to the desired position, and fasten it in place.

Figure 6. Moving the Mechanical Range Stop.

Wiring

Direction of damper rotation

All wiring must conform to NEC and local codes and regulations.
Use earth ground isolating step-down Class 2 transformers. Do not use autotransformers.

The sum of the VA ratings of all actuators and all other components powered by one transformer must not exceed the rating of the transformer. It is recommended that one transformer power no more than 10 actuators.

CAUTION:

Do not wire different types of actuators (such as MS/MF41-6153 Series) in parallel with these models.

WARNING:

All six outputs of the dual auxiliary switch (A and B) must only be connected to:

Class 2 voltage (UL/cUL),
Separated Extra-Low Voltage (SELV) or Protective Extra Low Voltage (PELV) (according to HD384-4-41) for installations requiring $(\epsilon$ conformance. You must use a $C \in$ certified plenum actuator.

WARNING:
Installations requiring (\in Conformance:
- All wiring for CE certified actuators must only be separated extra low
voltage (SELV) or protective extra low voltage (PELV) per
HD384-4-41.
- Use safety-isolating transformers (Class III transformer) per
EN61558. They must be rated for 100\% duty cycle.
- Overcurrent protection for supply lines is maximum 10A.
To reverse the direction of rotation, wires 6 (violet) and 7 (orange) can be interchanged.

Wiring Designations Each wire has the standard symbol printed on it.

Figure 7. Three-position Control.

24 Vac power supply

Three-position control 24 Vac

Standard Symbol	Function	Color
1	Supply (SP)	Red
6	Control signal clockwise	Violet
7	Control signal counterclockwise	Orange
Factory-installed Options		
S1	Switch A Common	Black
S2	Switch A NC	
S3	Switch A NO	
S4	Switch B Common	
S5	Switch B NC	
S6	Switch B NO	
P1	Feedback Potentiometer 0 to 100\% P1-P2	
P2	Feedback Potentiometer Common	
P3	Feedback Potentiometer 100 to 0\% P3-P2	

Start-Upl Commissioning

- Check that the wires are connected correctly.
- Connect wires 1 (red) and 6 (violet) to a Digital Multimeter (DMM) with the dial set at Vac. Apply a control signal (24 Vac) to wires 1 and 6 to verify that the operating voltage is within range.
- Connect wires 1 (red) and 7 (orange) to a DMM with the dial set at Vac. Apply a control signal (24 Vac) to wires 1 and 7 to verify that the operating voltage is within range.

1. Check Operation:
a. Connect wire 1 (red) to the actuator.
b. Apply a control signal (24 Vac) to wires 1 (red) and 6 (violet).
c. Allow the actuator shaft coupling to rotate from 0° to 90°.
d. Stop applying a control signal to wires 1 (red) and 6 (violet).
e. Apply a control signal (24 Vac) to wires 1 (red) and 7 (orange).
f. Allow the actuator shaft coupling to rotate from 90° to 0°.
2. Check Feedback:
a. Set the DMM dial to ohms.
b. Connect wires P1 and P2 to the DMM. The DMM should indicate a resistive value.
c. Apply a control signal (24 Vac) to wires 1 (red) and 6 (violet).

The reading of the DMM should increase.
d. Connect wires P2 and P3 to the DMM.

The DMM should indicate a resistive value.
e. Apply a control signal (24 Vac) to wires 1 (red) and 7 (orange). The reading of the DMM should increase.
3. Check Auxiliary Switch A:
a. Set the DMM dial to ohms (resistance) or continuity check.
b. Connect wires S1 and S3 to the DMM.

The DMM should indicate an open circuit or no resistance.
c. Apply a control signal (24 Vac) to wires 1 (red) and 6 (violet). The DMM should indicate contact closure as the actuator shaft coupling reaches the setting of switch A.
d. Stop applying a control signal to wires 1 (red) and 6 (violet).
e. Connect wires S1 and S2 to the DMM. The DMM should indicate an open circuit or no resistance.
f. Apply a control signal (24 Vac) to wires 1 (red) and 7 (orange).
g. The DMM should indicate contact closure as the actuator shaft coupling reaches the setting of switch A.

Start-Upl
Commissioning, Continued

5. Check the Auxiliary Switch B:
a. Set the DMM dial to ohms (resistance) or continuity check.
b. Connect wires S4 and S6 to the DMM.

The DMM should indicate an open circuit or no resistance.
c. Apply a control signal (24 Vac) to wires 1 (red) and 6 (violet).

The DMM should indicate contact closure as the actuator shaft coupling reaches the setting of switch B.
d. Stop applying a control signal to wires 1 (red) and 6 (violet).
e. Connect wires S4 and S5 to the DMM.

The DMM should indicate an open circuit or no resistance.
f. Apply a control signal (24 Vac) to wires 1 (red) and 7 (orange).

The DMM should indicate contact closure as the actuator shaft coupling reaches the setting of switch B.

Figure 8. Dimensions of the DuraDrive Actuator and Anti-rotation Bracket.
On October 1st, 2009, TAC became the Buildings business of its parent company Schneider Electric. This document reflects the visual identity of Schneider Electric, however there remains references to TAC as a corporate brand in the body copy. As each document is updated, the body copy will be changed to reflect appropriate corporate brand changes. without notice.

